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An investigation of the invariance of quantum theory under the complex group 
reveals a natural origin of relativistic physics from quantum theory. Once such an 
origin of relativity is accepted, quantum limitations on the applicability of 
standard relativistic theory also become evident. 

1. INTRODUCTION 

It has become an accepted part of modern physical theory that the 
origin of the electromagnetic interaction is a simple consequence of the 
invariance of pure quantum states under the action of the group U(1) = { e'~ 
0 ~ R }, where i is the complex structure of the Hilbert space ~ whose rays 
mathematically represent the pure states [Hermann Weyl's gauge theory 
(Weyl, 1931)]. However, the rays of complex projective space, t ~ c g ,  are 
invariant not only under the compact Abelian group U(1), but also under 
the action of the noncompact Abelian group (eP: 0 ~ R }, i.e., we have 
invariance under the full complex group ~'0 = ~' - (0) = ( eP+~~ O, 0 ~ R }, 
where r represents the action of the complex field on ,.,'ft. This group is a 
two-dimensional real Lie group, but to the present author's knowledge only 
one dimension has been given physical interpretation in quantum theory 
and no one seems to have investigated the question of whether the noncom- 
pact component has any analogous interpretation. This paper is an investi- 
gation of that question. We start with a formulation of the differential 
geometry of an arbitrary n-dimensional complex projective space, but 
quickly specialize to the case of projective complex 1-space [~xcg], simply 
because we uncover the interesting fact that, until the strong interaction (or 
beyond) predominates, all of modern physics can be covered by that 
simplest case. In the process we also formulate a generalization of standard 
quantum theory that allows all non-field-theoretical computations to be 
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carried out in finite dimensions rather than the usual infinite-dimensional 
Hilbert space context, so that we need only finite-dimensional projective 
spaces as base spaces for all constructions. Field theory then naturally 
follows as the theory of associated bundle sections over the base space. 
Remarkably, we find that a full general relativistic theory is intrinsic to the 
geometry of ,Y'~g quantum systems, and this relativistic structure is natu- 
rally identifiable with the corresponding structure of the real world to the 
extent that our observations of the universe are basically determined by ~ W  
structures, e.g., sp in - l /2  electronic structure of atomic matter. 

2. ,~.~ AND ITS DIFFERENTIABLE STRUCTURE 

To construct 9~,,~ and specify clearly its differential geometry, we start 
with even-dimensional real space R 2~''+~ equipped with its standard 
Euclidean topological and differentiable structures, and choose some com- 
plex structure operator i ~ ~' =- R2~"+I)| such that i 2 = - I ~ 
and i = - i +, where of course i + means the adjoint operator relative to the 
usual Euclidean metric on R 2~'+~. Let ~ ' c  ~ be the commutant of i, and 
let W = ( aI + bi: a, b ~ R } c ~ '  be the resulting complex field acting on 
R 2~'+1~, with ~ o = ~ - ( 0 } = R + U ( 1 )  = {ePl+~ o , O ~ R )  the complex 
group, decomposable into the compact unitary and noncompact positive 
subgroups U(1) and R+, respectively. Finally, let R0 ~''+tl= R 2~'+1~-(0}. 
Then 

~ , , ~ =  R~0'"+1'/% = (.:%= (cx:  c ~ 0 ) "  x ~  R~ '"+~' ) 

i.e., ~,cg is the space of orbits .~=~oXC R~ C"+~l of the group ~o in 
R o ( . +  1). 

To construct now the standard differentiable structure on ~,cg we need 
to introduce an atlas of charts, and this can be most conveniently done in 
physically interpretable terms using the structure of the X-linear operator 
space ~ (  We note that each 2% ~ ~,cg uniquely defines a two-dimensional 
subspace 2% U {0) = ~x  = {(aI + bi)x ) c R 2~"+1), where x can be any ele- 
ment of the orbit .~, and so there is a well-defined correspondence between 
elements 2% ~ ~,~g and subsets ,t,.~. c ~ of ~g-linear idempotent operators 
that map R z~"+~) onto .~ u (0} (two-dimensional projections onto ~(" u {0) 
that commute with i). Writing elements of ,I,~ as ~ . ,  ff.~ . . . . .  and defining 
the complementary projections ~ = I - ~.~ ~ ,t, ff = I - q%, we obviously 
have 

= 
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and the implications 

Adopting physically motivated terminology, we refer to the elements .~ E ~ c g  
as states, and each r ~ q'~. wilt be called a projective representation or 
realization of the state k (also commonly called a density operator represen- 
tation ). 

So far, then, we have a class of trace-2 projections corresponding to 
each element .~ of projective space. However, picking out a metric g on 
R z('§ gives us a meaning for adjoint operators in ~ in the standard way, 
and hence provides also a meaning for self-adjointness in ~ .  This allows us 
to pick out from each set ~ the unique element +~ that is self-adjoint in 
the given metric, and this in turn gives us embeddings r of ~,cg into the 
self-adjoint operators in ~ '  relative to the chosen metric. When the 
standard metric go on R 2~ is used for this construction we will refer to 
the resulting embedding r as the standard self-adjoint projective representa- 
tion of ~,,~r in the operator space ~ ' .  This representation is the one we will 
use for the construction of an atlas of charts on ~,/g, but for later purposes 
it must be emphasized that any equivalent metric could be used, so that our 
resulting differentiable structure is independent of such choices of equiva- 
lent metric. Now a choice of metric (say, go) also gives us a meaning for 
orthogonality in R 2~"+~), and, using adjointness, an induced metric trace 
( A + B )  on the operator space ~ ,  with the corresponding meaning for 
orthogonality in ~ and ~ .  This allows us to choose exactly n + 1 mutually 
orthogonal orbits ~j ~ ~,cg (defining orthogonal planes in R 2("+~)) with 
corresponding mutually orthogonal self-adjoint projection operators Cj = 

Using the standard metric to make all these choices, we can define 
n + 1 subsets of .~, cg: 

to be used as chart domains. As .~ ranges over the j t h  domain ~,,J~' it is 
straightforward to check that the mapping 



866 Mar low 

is bijective onto an open subset of the 2n-dimensional subspace ~J  c ~ '  % 

consisting of those self-adjoint trace zero r operators that map the 
" ' "  ^ C R ~ ( n + l )  orolt xs - into the complementary range space of 4'~ in R 2('+1~, 

and that ~ o  Xk -1 (well defined on an open set in X , ( 9 ~ c g ) c  ~ , )  is a 
diffeomorphism in terms of the standard differentiable structure of opera- 
tors on R 21"+11. Taking the n + l  mappings ~ as charts, we have the 
standard differentiable structure on 9~,r as a 2n-dimensional real manifold 
or, of course, an n-complex-dimensional manifold. The standard Rieman- 
nian metric go on 9~,cg (Fubini-Study metric) is simply the obvious metric 
induced by the trace metric on the operator spaces ~R~. c ~ (considered of 
course as tangent vector representauon spaces for ~,,r Similarly, the 
standard symplectic form is defined by the metric tr(A +B) applied to the 
operators iA, B,i.e., 

c00(A, B) = tr([iA] + B) = - t r ( i A  +B) 

Together the two forms define the standard Hermitian metric 

ho( A, B) = go(A, B)+ icoo( A, B) 

= tr( A + B ) -  i tr( iA + B ) 

with the required properties 

ho(CA, B ) = C h o ( A , B )  

h o ( A , C B ) = C h o ( A , B )  

We emphasize again that if we had chosen a different but equivalent metric 
on R 21"+ 11 we would arrive at the same differentiable structure for 9~,,~, but 
with different (but equivalent) forms g, co, h over ~,cg. 

Finally, while, as we will see in the next section, the embedding ~ is 
given immediate physical interpretation by quantum theory, the most di- 
rectly laboratory-measurable quantities seem to be more simply expressed in 
terms of an auxiliary construction, only trivially different from 4,-- the  
polarization vector or spin vector o corresponding to ~, defined for each state 
.~ ~ 9~,cg as the trace 0, unit length self-adjoint operator 

o~.= N,,( ~ x - - n -  z~_~ ) =  N,, ([1 + n-Z] ~x. - n - ' I )  

where the normalization factor is N, = nZ/2[2(n + 1)]-1/2. [See Schiff, (1968, 
pp. 382ff. for physical discussion.] Now trace 0 simply means orthogonality 
with respect to the operator I ~ ~i ,  and this condition obviously defines a 
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subspace ~ o  c ~ '  [the space of ~'-linear trace-O self-adjoint operators]. 
Inspection of our chart formula above shows that, for .~ ~ ~,{~, 

Xj(.~) = Pj �9 J/.~ = 2N, Pj. a.~ 

where Pj is the projection operator defined on operator space ~ by 

so that the polarization vector operators o~ serve equally well to define the 
natural operator-valued charts over ~,cg as do the density operators ~s` 
themselves. One immediate advantage of using the o~. representation is that 
the as, operators lie in ~ 0  along with the natural chart operators Xj(.~), 
and, as .~ ranges through the chart domain ~a,[~g, ff~ ranges through an open 
set of a real 2n-dimensional unit sphere in i �9 _ ~s0- Taking o~-  a t as a pole of 

�9 J - /  

this sphere, the corresponding operator Pj projects o~. (and hence ,,b.~.) onto 
the equatorial hyperplane of the sphere orthogonal to oj and allows us to 
use standard spherical polar angle coordinates to coordinatize the states 
.~ ~ ~a~cg. Such angle coordinates turn out to be the most directly measur- 
able quantities characterizing the states in actual physical laboratories. We 
will see this in specific detail in the examples we need later. 

3. Q U A N T U M  THEORY IN PROJECTIVE SPACE 

The standard assumptions of quantum theory, expressed in terms of 
complex projective space ~ '  [cf. Weyl (1931) and Hermann (1973), for 
example] make explicit use of a particular choice of metric with the 
corresponding definition of adjointness, so that the space ~ (~'-linear 
self-adjoint operators on the underlying real space) is well defined. Then we 
have the following: 

(a) The pure states of a physical system that can be described by ~acg 
(i.e., states with all "removable statistics" refined away) corre- 
spond to the elements .~ ~ gaeg as realized by the projection 
operators 4,s` ~ ~ .  

(b) Observables on the system correspond to arbitrary operators 
A ~ ~ ,  with the expectation value A-t of the observable corre- 
sponding to A on the state corresponding to .~ given by 

A-~ = tr~c(A,~:,) 
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where tqr = 1/2  trace is the trace function computed with respect 
to the complex field ~'. 

Expectation values on a statistical ensemble of pure states .~j with probabil- 
ity weights p j - - a  mixed state W--a re  then computed in the standard way: 

} J 

so that mixed states can be represented by density operators W = Z j p i ~  ' 

~ ,  i.e., positive operators W such that W 2 < W and tr~e(W) =1. (The pure 
state case is then the specialization W 2 = W = q,.) 

These standard assumptions result in a limitation on the possible 
symmetry transformations of a physical system to those transformations 
that correspond to operators U on the underlying real space such that 
U + =  U -~ and either Ui  = i U  or Ui = -  i U ,  i.e., unitary W-linear or cg. 
antilinear operators, acting according to the prescriptions 

A-* A'=VAV-' ,  

since only these transformations preserve all expectation values a n d  the 
Cg-linear self-adjoint projective character of the operator realizations ~.  
assumed for states .~ ~ ~r This limitation leads immediately to the stan- 
dard supposition that only infinite-dimensional projective spaces are suit- 
able for the representation of physical systems, since, for example, the 
restricted Lorentz group [i.e., SL(2, ~g)] is well established experimentally as 
a symmetry group of physical systems and, as is well known, there are no 
unitary or anti-unitary operator representations of this group except in 
infinite dimensions. A second argument adduced for the infinite- 
dimensionality of physically relevant ~cg spaces is that the standard 
quantum definition of conjugate observables 

Q P  - P Q  - i I  

cannot be realized except in an infinite-dimensional space, if i is understood 
as a scalar (i.e., commuting with all operators). This follows from the fact 
that in finite-dimensional spaces the trace function is defined for all 
operators, with t r ( Q P -  P Q ) =  0 and tr(I.)4: 0. Hence, only in infinite-di- 
mensional spaces, where tr(I)  is not defined, can we have Q P  - P Q  - I .  To 
demolish this second argument all we need to do is note that, once the 
nature of i as a complex structure operator on an underlying real space is 
understood, the relation Q P  - P Q  - i I  = i is easily satisfied in any space of 



Relativistic Physics from Quantum Theory 869 

complex dimension n > 0. For example, if n = 1, the real space underlying 
~lcg is of real dimension 2(n + 1)= 4, and so i is an element of the real 
Dirac algebra of operators on R 4, with QP - PQ - i satisfied in an infinite 
variety of ways (e.g., take i = Y5 = 3'0TlY273, Q = Yo, P = 717273). 

On the other hand, the valid group representation argument for in- 
finite-dimensional projective space depends crucially on the assumption in 
standard formulations that only self-adjoint representations of states and 
observables be used. If we note that, for any T ~ GL(n + 1, cg)UGL(n + 
1, c g ) - G L ' ( n  + 1 , ~ )  (i.e., any invertible operator on the underlying real 
space that either commutes or anticommutes with the complex structure 
operator i), the transformations A' = TA T-  1, (k'~, = T~.~T- z leave invariant 
both the expectation value formula and the Cg-linear nature of the operators 
involved, as well as the projective character of J/.~, we are led to suspect that 
all transformations defined by ~linear or ff-antilinear operators in the 
group GL(2(n +1), R) should be candidates for symmetries of a physical 
system describable by ~ ,~ ,  and that something is not quite right in the 
dependence on metric implied by the self-adjoint restriction imposed by 
standard formulations of quantum theory. 

If the point of view advocated above can be successfully adopted, then 
we note that we have an immediate termination of the extensive search 
presently going on for physical symmetry groups that contain both SL(2,  ~ )  
and the unitary groups as natural subgroups, since for n > 0 the group 
GL(n  + 1, oK) = cg~ x S L ( n  + 1, cg) contains both SL(2,  cg) and U(n + 1) = 
U(1)X SU(n + 1). For example, the appropriate group of symmetries for a 
~@zcg system would be exactly GL(2, cg)= cg ~ X SL(2, cg), where SL(2,  ~g) 
decomposes into the 3-space rotations SU(2, cg) and the relativistic boosts 
SL(2, ~ ) -  SU(2, cg). The only obstacle to the recognition of GL'(n + 1, cg) 
as the required group of symmetries is the exclusive emphasis in standard 
formulations on unitary and antiunitary operators (metric-preserving opera- 
tors) as the only suitable realizations of physical symmetries. 

We note also that we have a solution to the problems associated with 
infinite-dimensional projective spaces in physical theory, since no such 
spaces would be needed as base spaces for physical systems; quantum field 
theory, of course would still be infinite dimensional, since it is the theory of 
cross sections of bundles over the base space ~cg defined by a physical 
system, and such spaces of cross sections are naturally infinite dimensional, 
but this is a far more tractable problem than that of infinite-dimensionality 
for the base space itself. We can of course continue to embed everything 
automatically in infinite-dimensional space, as required by the standard 
formulation of quantum theory, and thus have unitary operator repre- 
sentations for SL(2, cg), but this procedure [known mathematically as 
"Koopmanism"--the translation of a finite-dimensional nonlinear problem 
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into a linear infinite-dimensional one; cf. Abraham and Marsden (1978), p. 
140] seems more to obscure the fundamental nature of the problem than to 
resolve it. 

A principle that generalizes standard quantum theory in such a way 
that it becomes free of the questionable dependence on adjoint and metric 
(and hence also free of the need for infinite-dimensional projective spaces) 
can now be stated as the principle of quantum relativity (QR): 

The laws of physics should be dependent only on the differentia- 
ble structures of the mathematical representation spaces used to 
express the laws, and should be invariant under the choice of 
equivalent metrics defining the differentiable structure. 

We give this principle a relativistic designation simply because it seems to 
incorporate into quantum theory a lesson that relativity has been teaching 
for some time: the differentiable Euclidean space structures of Newtonian 
physics remain in relativistic physics, but equivalent observers can see very 
different length and angle measurements (metric properties). 

As applied to our earlier formulation of quantum theory for a physical 
system with states describable by elements .~ in 9~,,~r QR requires no 
modification of the trace formula for expectation values, A w = tr~e(A W), 
since the trace function is definable in purely linear algebraic differentiable 
terms with no reference to metric--the sum of the spectral values (points 

~ ~g such that C a = A W-?~I  is noninvertible). For later reference we 
note that the same property also holds of course for the determinant 
(--product of spectrum), with the obvious relation e irmA)= e zx= I-Ie x= 
det(e '~) for arbitrary operators A in finite dimensions, so ' the .  tr(A)= 
lndet(eA). 

However, the space ~ of cg-linear self-adjoint operators used in the 
standard formulations of quantum theory clearly does not have the invari- 
ance required by QR, and so it must be replaced. The necessary generaliza- 
tion is immediately at hand in the class ~z~  of r real diagonal 
operators, defined as the class of operators having real spectrum and a 
complete set of eigenvectors, so that in the metric making the eigenvectors 
mutually orthogonal an operator in ~ o  will be self-adjoint. Thus, an 
awkward but descriptive term for ~ o  would be "self-adjointable" opera- 
tors on  R 2(n+l~, i.e., self-adjoint in some metric g differentiably equivalent 
to the standard Euclidean metric go on R 2~"+~, and so using the self-ad- 
joint operators ~ relative to any fixed metric g we have 

since a transform defined by T ~ GL'(n + 1, ~g) (similarity transform) leaves 
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invariant both spectrum and linear independence of eigenvectors. Now for 
an arbitrary A ' = T A T - I ~ Y e ~ o  as above, with some initial metric go 
defining ~) ,  if vj is any eigenvector of A ~ ~) ,  then vs" = Toj is obviously 
the corresponding eigenvector of A', and the metric g in which the basis 
{ vj } will be mutually orthogonal is straightforwardly computed as 

g(x,  y ) =  go(x,GrY),  x, y ~  R 2~"+z~ 

where Gr is the positive invertible operator defined by Gr= [TT+] -1. 
Thus, if , ~ J =  {R z~'+z), h~} is the complex Hilbert space defined by the 

go 
Hermitian metric hio(x, y) = go(x, y)+ igo(ix, y), and ~ '  is the corre- 
sponding space for metric g, then T: ~0---, ~ defines a unitary (or 
antiunitary) transformation of one Hilbert space onto another, both com- 
pletely equivalent insofar as the differentiable structure of ~cg  is con- 
cerued. Since the transformations defined by T ~ GL'(n + 1, cg) all equally 
well preserve physical expectation values, they can (and will) be interpreted 
as symmetries of the physical system. The particular case T ~ U(n + 1, cg) 
just defines isometric transformations from d o  onto itself (unitary opera- 
tor case) and should not be accorded the special status given to it by the 
usual formulation of quantum theory. 

We emphasize, then, that to incorporate QR the only changes needed 
in the standard formulation of quantum theory as given earlier consist in 

i everywhere replacing ~ with ~R o, and using the correspondingly broad- 
ened understanding of physical symmetry transformation (generalized frame 
change). Thus, for example, SL(2, cg) appears as a natural unitary trans- 
formation symmetry group intrinsic to the differential geometry of the state 
space ~cg  postulated by quantum theory for any system with n >/1. It 
should also be clear now that we can take one further step if we allow the 
complex structure operator i itself to transform, i---, i'= TiT -~. Then any 
T ~ GL[2(n +1), R] defines a unitary transformation T: )~Jo-" ~ "  leav- 
ing the underlying differential structure of ~,,~' invariant, so that ultimately 
GL(2(n + 1), R) should be able to be seen as the full symmetry group for an 
n-dimensional complex projective system [this has been independently sug- 
gested in the case n =1, in a purely gravitational context, by Kunstatter 
et al. (1983)]. We will investigate this in future work, but for now we need to 
establish answers to questions of interpretation by studying the more 
restricted ~'-linear or antilinear (i ~ - i) symmetries in their simplest non- 
stationary application, ~zcg. Finally, it is interesting to note that the 
simplest space of all, ~0r (single stationary state), has been proposed 
elsewhere in these same Conference Proceedings (Wootters, 1984) as the 
appropriate quantum model for the one known unique physical system--the 
universe as a whole. In light of the next section, we believe this proposal can 
be seen to fit well into the revision of quantum theory proposed here. 
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4. P ~  SYSTEMS 

The quantum state space for the simplest possible physical systems 
exhibiting any change in expectation values (simplest nonstationary sys- 
tems) is obviously 9~1~, with underlying real space R 4 and operator space 
R 4 |  4 = R  16. Since this is simply the standard real Dirac algebra of 
operators, we will write ~ for R 16 rather than ~ .  Choosing a complex 
structure operator i ~ .@, is equivalent in standard physical notation to 
specifying ]'s ~ ~ ,  and so we will identify i = 75, with the only defining 
properties i 2 = ),52 = - I ~ ~ and i § = ),+5 = - i = - ),5, where the adjoint 
operation is defined by the usual Euclidean metric go on R 4. Then, as in the 
general case given earlier, we construct R~ - R 4 --  ( 0 } ,  ~ -= ( aI  + bi ) c ~ ,  
ego = ~ ' - ( 0  } c ~ ,  and finally the space of orbits ~ y =  R 4 / T o  = {.~= 
~oX: x ~ R~} of the complex group ego acting on R 4. Thus, since R 4 
equipped with complex structure i has complex dimension 2 (i.e,, ( R 4, i } - 
cg2), the manifold 9a~  ' has real dimension 2 and complex dimension 1. 

An atlas of charts for the standard differential structure on 9~c~ is 
then specified by choosing any two orbits .~, ~ • ~ 9~g ,  orthogonal in the 
usual metric go (equivalent to choosing orthogonal 2-planes in R4), and 
usin~ the two ~-linear g0-self-adjoint projection operators J/~,, ~.~ = ~,~ = 
I - ~ .  ~ ~ onto these 2-planes to construct two chart domains: 

(In the special case of ~c~ ,  of course, both ~ and ~ • = I -  ~ represent 
elements of ~ y . )  The required atlas of charts consists, then, of the two 
operator-valued mappings onto open sets in the real two-dimensional sub- 
spaces ~ ,  .@y �9 c ~ o  defined by 

and 

X~.: ~'?'~r --' ~]. 

- - '  = 

- - '  �9 = e ,l " r  

where, in this special case of ~t~g, 

C s , [  
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is the projection operator on the space 2 ~ (projecting into the subspace 2k0 
of ~'-linear trace-zero self-adjoint operators in the Dirac algebra 2 ) .  Thus 
the only difference between the two charts Xf, and X~.~ lies in the different 
domains required to guarantee that the mappings are one-to-one: 

and the two charts agree on the intersection #'leg - { ~, 9 • ). Choosing, say, 
Euclidean coordinate axes in the real 2-space ~.~i = ~.(, �9 gives one standard 
type of coordinatization for #~Sg. 

The spin vectors or polarization vectors as, ~ 2k0 corresponding to the 
projections J/.~ representing states of a #Sg  system are particularly simple; 
from our earlier definition we have 

o.~ = �89 - q,~ ) = ~,~ - �89 

with 0 . ( = ( 1 / 4 ) I ~ ,  so that t r ( o ( ) = l ,  while t r~e(q()=l/2.  Thus, in 
terms of the real Dirac algebra structure defining the differential geometry 
of ~IW, o~ is a family of unit vectors sweeping out a unit 2-sphere in the 
real 3-space 2~0 of X-linear self-adjoint trace-0 operators in 2 ,  with 
self-adjointness defined in terms of the original Euclidean metric chosen on 
R 4. Choosing some o~, to define a pole of the sphere (z axis) and using P~ to 
project a~ (and hence ~:~, since P5,o.~ = Pr,~) onto the equatorial plane 
orthogonal to of, in 2~0, we can use standard polar angle coordinates 0, 
on the sphere, relative to o~ and some q~, in the plane, to coordinatize ~1 ~' 
systems. We note, howevei-, that general observables A on a #1c~ system, 
including the density operators d/~ = o~ + (1/2)1, live in the full real 4-space 
2~ of C#linear self-adjoint operators in the Dirac algebra, spanned by I ~ 2 
and the trace-zero operators o~ ~ 2~0. 

Now we come to an important point for interpretational purposes: the 
observables e~ = ( 1 / 2 ) ( ~  - ~ ) on a ~IW system have an experimentally 
well-established meaning as the intrinsic angular momentum vectors corre- 
sponding to the states of a spin-l/2 system, and an essential part of this 
interpretation lies in the identification of expectation values such as 
trse(o.~a~)= tr~c(a~q~:~) as the components of the spin vector along the 
various possible directions of the observable 3-space of ordinary physical 
experience (Schiff, 1968, p. 382). Hence, if we wish to preserve this standard 
interpretation, we must identify the Dirac algebra 3-space 2}0 with the 
3-space of ordinary physical experience, and, more generally, the Dirac 
algebra 4-space of observables 2} with the observables defining relativistic 
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physics. We will see shortly that this results in the standard interpretation of 
elements of the Dirac algebra as used, say, in the Dirac equation. We can 
reverse this line of argument, also, and see that, to the extent that an 
observer interacts directly only with t~l~' systems, the observer would find 
himself living in a world representable by elements of the Dirac algebra 
precisely because the observed systems live in the mathematical space ~lcg. 

How broadly, however, can we realistically expect such a mathemati- 
cally simple model as ~t~g to apply? With some understanding of the 
richness of the mathematical structures involved--underlying real 4-space 
with 16-dimensional operator space needed to define complex structure and 
differential geometry--we can well begin to suspect much wider application 
than a naive first reaction would suggest, but certainly (by definition) the 
model applies to a single spin-l/2 particle as long as its interactions with 
the rest of the universe can be described by potentials and fields completely 
definable within the mathematical structure available over ~cg .  Then, by 
the standard conventions and methods for dealing with N particle systems 
in terms of product spaces, we can extend the coverage of ~xcg to such 
systems, again under the proviso that the effects on any individual particle 
can be modeled within the differentiable structure of a single ~ c g  space 
(just as, for example, a classical system of N particles with 3N-dimensional 
configuration space is modeled "in" a single 3-space under the analog of the 
above proviso). Is there an even broader applicability of ~a if, though, say 
to systems that might intrinsically require a very high-dimensional projec- 
tive space for their complete description? There is, if we can introduce into 
quantum theory the same sort of scale invariance assumed for classical 
theory. Here, "scale invariance" is being used to mean the property that 
allows us to treat macroscopic systems (even cosmological structures such as 
clusters of galaxies) as simple mass points moving in effective gravitational 
and electromagnetic fields if we can take a sufficiently far removed view- 
point so that the complicated internal kinematics and dynamics of the 
system become unobservable and ignorable. Then the appropriate measur- 
able quantities are "thermodynamic" observables such as total mass, total 
luminosity, etc. 

We can introduce this type of scale invariance into quantum theory by 
noting that an arbitrary density operator W = Ejkj~j  (representing a possi- 
bly highly complicated mixture of pure states from an arbitrary-dimensional 
projective space), as a positive operator on a Hilbert space ~ ,  defines a 
positive square root operator W 1/2 that is a unit length vector in ~vfS" (the 
space of trace square-normable operators on ovf), i.e., t r ( W ) = l =  
tr(W1/2W 1/2) =1 = W x/2 ~ ,g'5 a. Then ~w = W1/2| defines a one- 
dimensional projection operator on the complex Hilbert space a~?'5 a, and 
hence an element W ~ ~gse(g, i.e., an element of the complex projective 
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space of ~g'5 a. Now suppose that, as W evolves, I~ stays in a one-dimen- 
sional complex projective submanifold ~l~g c ~jese~'; then the ~xcg model 
applies as before, and we can define observables on W by elements in the 
Dirac algebra corresponding to ~lcg. For example, if T is the operator, on 
the original Hilbert space ~ ' ,  that represents kinetic energy, so that tr(TW) 
= Ej~'itr(T~bj)= Tw gives the average or expected value of kinetic energy 
for the system represented by W, then the "superoperator" T on )~'5 a, 
defined by left-multiplication, i.e., T W  t/2 - TW 1/2 ~ ,9~5 a,  gives the opera- 
tor on ,,'g'5" defining average internal kinetic energy (temperature) for l,J", 
with 

t r ~ , ( T ~  w ) = t r ~ ( T [  W1/z| = tr~(W1/2[TWl/Z]) 

= trse(wl/2Twt/2)  = tr, m(TW) = Tw 

When the evolution of ~ w is restricted as described above to a ~ '  
submanifold, letting Pw mean the projection onto the resulting complex 
2-space in ~ 5  a, we can obviously replace T by the Dirac algebra operator 
PwTPw over ~1 ~' without loss of information (the compression of T to the 
2-space). Since arbitrary observables A on the original Hilbert space 9g' 
define such left-multiplication operators A and the corresponding compres- 
sion PAP, we see that all observable information on I,V ~ ~ c g  is contained 
in the corresponding Dirac algebra of operators, and we might well begin to 
suspect that the origin of relativistic physics lies in the fact that our ordinary 
life experience is built up from just such statistical observations of ~lCg 
systems W. In any case, our working hypothesis will be that the mathe- 
matics of ~2r with corresponding symmetry groups SU(3) c SL(3, ~') c 
GL(6, R), and all higher-dimensional geometries, will not be needed in 
quantum physics (which we of course understand as encompassing all of 
physics) until we encounter systems exhibiting extreme properties relative to 
the standards of ordinary macroscopic experience, such as extremely high 
temperatures, energy densities, etc. Such systems would of course show up 
as singularities of any mathematical model that tries to fit them into the 
mold appropriate only for the lower-dimensional 4-space mathematics over 

The "superoperator" formulation given above is, of course, not new 
and has been tacitly understood in standard applications since the begin- 
ning of quantum theory, e.g., in spectroscopy, where today's pure states, as 
determined by available line spectra, become tomorrow's statistical mixtures 
as more refined instrumentation reveals line splitting. The introduction of 
the scale invariant ~ w model simply incorporates into quantum theory the 
flexibility necessary to handle our inability to define operationally "ulti- 
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mate pure states," and allows us to treat systems of arbitrary scale or 
complexity in a unified formalism. Thus we can always assume that quan- 
tum theory is to be formulated in the projective space (ray space) of a 
complex Hilbert space of operators of indeterminate but probably large 
dimension and our working hypothesis comes down to the assumption that 
"ordinary experience" is defined by systems W confined to the simplest 
projective submanifolds of the overall ray space. With this understanding, 
we will continue to write .~ e ~r  ~.~, etc., allowing for the fact that ~ may 
well be a projective element W corresponding to a density operator W of 
large dimensionality (i.e., dimension of range space = rank). 

To the extent that the physical measuring apparatus available was 
limited to the type capable of registering only quantum expectation values 
(examples: hand touching warm object or thermometer giving a more 
refined measure of temperature, but still only registering an average over 
many transferals of kinetic energy; eye or photometer registering average 
intensity; etc.), one might well expect that a careful study of the evidence 
would result in a theory of observables as real functions X on a system 
space of elements ~, where the function values A~ could be computed from 
a quadratic form A-~ = tr~e(A~) over a real four-space (our ~ )  if correct 
vector representatives 

A = A q  + AJoj = X q  + A %  Vo 

= �89 + +Jej = �89 + ~PIYjTo = �89 + o k E m~ 

were assigned to observables and systems in the four-space. (We will start 
using freely both the standard summation convention and the usual nota- 
tion for orthonormal bases %=7j7o e ~k0 in the 3-space of trace-0 
self-adjoint Dirac operators.) A fundamental distinction between vectors in 
the 3-space ~ 0  and the I component would become evident as soon as the 
natural symmetry group for ~x~g showed up sufficiently clearly in the 
experimental evidence and an attempt was made to treat the symmetries as 
frame transformations of the 4-space, since for arbitrary A e ~ ,  T 
GL'(2,  cg): 

A ' =  TA T-1  = A II + AJTojT-1  

that is, the I component behaves as a scalar invariant under all such frame 
changes, with 

tr~(A'J/.~) = At + tr~e(A'o.() 
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where we adopt the standard vector designation A for the 3-space elements 
in ~ 0 .  Moreover, given the standard interpretation of frame changes in 
physics as specifying possible kinematics when applied separately to one or 
the other vector in the above formula--tr~e(Aqp~)= tr~e(TAT-l~:~) would 
represent observations made from a transformed observer frame or lab 
relative to a fixed system ("passive" view of transformations or quantum 
theoretical H eisenberg picture), while tr~e(A~.~')= tr~(AT-~T) would 
represent the same situation interpreted as observations made from a fixed 
lab frame on an inversely transformed, i.e., boosted and/or  rotated, system 
("active" view or quantum theoretical Schroedinger picture)--one would 
find that I components give kinematical constants of the motion as well, 
since 

trv(A'~:~) = A t + tr~e(A'a~ ) 

=tr~e(A~")=.~, At+tr~e(Aa~;) 

Thus, given the mathematical prominence of quadratic invariance theory at 
the beginning of this century when the earliest such invariant, c, was 
recognized and incorporated into physical theory along with invariance 
under SL(2, ~) frame changes in the form of Lorentz transformations, we 
can see that it would not be unnatural to look for a new quadratic form on 
the underlying 4-space representing observables and systems that would 
intrinsically express the invariant character of the I components and allow 
computation of these invariants by the simple rearrangement 

A t =  tr~e (Atk.~)- tr~e(At[r 

Since the fundamental work of W.K. Clifford in the last century, it has been 
recognized that the natural means of expressing and studying such scalar 
invariance lies in the construction of an algebra intrinsically associated to 
the desired quadratic form, and in this way we can see that the full 
16-dimensional Dirac algebra, as the Clifford algebra associated with the 
required pseudometric, would be discovered. For a physical treatment of 
Clifford algebra and particularly the relativistic Dirac algebra, see Hestenes 
(1966) or Casanova (1976). 

In terms of pure ~ quantum theory, of course, the Dirac Clifford 
algebra is simply the easiest way to incorporate the invariance of differentia- 
ble structure under transformations to equivalent metrics required by the 
QR principle, and first shows up as an essential component of the differen- 
tiable geometry of ~ as the algebra from which the complex structure 
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must be selected. The above construction of idealized history (based on the 
question "What if the quadratic nature of the quantum expectation value 
formula tr~e(A~.~) became evident in physical data before the full structure 
of quantum theory was understood?") might be taken simply as a parable 
illustrating the fact that an interpretation of classical special relativistic 
physics as a theory of "thermodynamic," i.e., statistical, observables on ~ 
systems is viable and widely applicable, in terms of the scale-invariant 
quantum theory presented earlier. However, we prefer to try a more literal 
interpretation of the idealized history, since, granted the basic assumption 
of this paper that quantum theory is the most fundamental theory of 
physical reality available to date, something like the above reconstruction 
must have occurred, and relativistic physics (as all physics) should have a 
natural origin from quantum physics. We incorporate all this by adopting a 
guiding principle that we will refer to as the QR principle of economy: 

Make only the minimal changes in standard mathematical for- 
malism and interpretation of both relativity and quantum theory 
consistent with the QR principle and the resulting finite-dimen- 
sional projective space structures. 

Since all elements of the Dirac algebra have standardly accepted interpreta- 
tions as real laboratory-definable quantities shared in common by both 
quantum physics and relativistic physics, we thus keep this shared interpre- 
tation by assuming that macroscopic observers (i.e., human-scale observers) 
order their experience of physical systems in terms of some macroscopically 
observable parameter t, which allows the assignment of a Dirac algebra 
vector trajectory 7, ~ ~ ,  with 7, 2 = I. to the observer's lab frame in such a 
way that y, serves to keep track of the proper definition of adjointness (and 
hence proper 3-space metric) at each observer instant as arbitrary families 
7], ~ SL(2.~g) are used to generate the observed evolution of systems 
and/or  observables. Specifically, starting with an initial 70 and the metric 
go on the underlying R 4 that makes 70 self-adjoint, we note that arbitrary 
families T~ ~ SL(2, cg) can be written in standard (possibly t-dependent) 
Hamiltonian form as T~ = e 'n,, where the bivector n t - z[ 'y j '~o  = ( x ) t  + 

iY/)TjYo splits into -a self-adjoint part xJTj,/o (generator of relativistic boost) 
and an anti-self-adjoint part (generator of 3-space rotation). Defining 
"rt = eat'q'0e-'n', it is straightforward to check that, if .4 represents the 
adjoint of A in the go metric, then A + = ~'~/[~'r gives the proper definition of 
adjointness in the new metric g, in which ~,, is self-adjoint. Thus the 
standard relativistic assignment of unit timelike Dirac 4-vectors to define 
instantaneous direction of possible observer lab frame trajectories (world 
lines) turns out, in terms of pure ~1~r quantum theory, to be a way of 
keeping track of the metric changes allowed by the QR principle, as systems 
and/or  observables vary arbitrarily. 



Relativistic Physics from Quantum Theory 879 

Thus, to each such observer frame we can assign "proper"  observable 
and state representations (self-adjoint in the metric making 3', self-adjoint) 
and "improper" non-self-adjoint representations which must be used to 
compute expectation values when the observed system .2 and observer frame 
are boosted relative to one another and it becomes evident that any 
formulation of quantum theory that allows only a fixed metric, with 
corresponding fixed meaning for self-adjointness, and only unitary opera- 
tors as frame symmetries and generators of the motion, is an intrinsically 
nonrelativistic formulation in the sense that, to introduce relativistic physics, 
we must embed everything in infinite-dimensional space and introduce the 
Dirac algebra of observables in a purely ad hoc way. 

An additional advantage of the finite-dimensional ~ c g  formulation is 
that a natural distinction between QR kinematics and QR dynamics ap- 
pears. Assuming for the moment the Schroedinger picture, with the observer 
considering his observing lab and timelike frame vector 70 fixed, and the 
Dirac spinor Jg , ( t )=  (1 /2 ) I  + o~(t) representing system states .2 evolving 
according to ~(t)=etn(b~.e -tn, where ~:~ = ( 1 / 2 ) I + o . t  is some fixed 
Dirac spinor with o, = +J(.2)~'j'/0, we see that there is a natural splitting of 
Dirac algebra Hamiltonians H into two parts H 0 (changing ~ but not .2) 
and H 1 = H - H  0 (changing .2). The requirement on H 0 is that it have 
.2 c R 4 a s  an eigenspace, but it need not have .~ • (as determined in the 
metric go corresponding to 70) as an eigenspace. Thus H o would cause 
~s~(t) to vary through non-self-adjoint projective representations of the 
same fixed state .2 ~ ~x~' relative to 70, since q~.~(t) would have fixed rar~ge 
.2 but varying kernel space .2 • in R 4. On the other hand, H 1 would be the 
part of the Dirac Hamiltonian not having .2 as an eigenspace, and hence 
causing actual evolution of the state .2, ~ ~l~g. The splitting of course 
would not be unique, but only up to a gauge operator H having the given 
initial .2 ~ ~lcg as an eigenspace. Thus H 0 corresponds to the free particle 
Dirac Hamiltonian and its four real eigenspaces .2, i.2, .2', i .2 'c R 4 corre- 
spond to stationary states, each still capable of being observed under 
arbitrary kinematical frame changes defined by all non-self-adjoint projec- 
tive representations ~ ,  and /-/1 gives the part of the Dirac Hamiltonian 
representing the electromagnetic vector potential (with real and imaginary 
parts given their standard interpretation), conceived of as corresponding to 
interactions of the system with the rest of the universe causing dynamical 
evolution of the system -~, ~ ~ r  Fourier analysis of the free particle 
eigenoperator case exp(tHo)+~,exp(- trio) = exp(/[/~ 0 - /~0])  J/~, where H o 
and H 0 are left-and-right-multiplication superoperators defined.by H 0 and 
the various component operators 7iyo-r./ro, i[Tfr0-~'j3'o] = [Tk't/--'tkTt] are 
regarded as defining linear momentum and angular momentum lab axes, 
respectively, results in the usual quantum relativistic conjugacy definitions if 



880 Marlow 

we wish to work in relativistic event space instead of energy-momentum 
space, with t = x0 transforming to a scalar multiple of differentiation along 
the energy axis /--/-/-t, x j transforming to a scalar multiple of differentia- 
tion along the j t h  momentum axis 7jT0-~'j~'0, etc. Finally, we note that in 
the Dirac superoperator formalism the spinor ~.~. = (1 /2 ) I  + o~. takes its 
standard 4-component "column" form as a complex vector on which 
exp(t[/t0 - /~0])  acts (as an element of ~ = R 16 commuting with i, J/.~. is a 4 
complex component matrix, which gets arrayed as a column in the superop- 
erator formalism). 

All this development fits rather naturally into the field theory of the 
next section, but we can see that, with the introduction of an interaction 
term H~ into the Dirac Hamiltonian, field theory becomes particularly 
important since then we are essentially discussing possible assignments of 
Dirac-algebra-valued cross sections J/.~(t)= q,:~, over elements xt varying 
through the manifold ~l~g, as opposed to the fixed state considerations of 
the free particle case. 

5. FIELD THEORY OVER ~lc~ 

The main advantage of finite-dimensional projective space quantum 
theory is precisely that we can use completely finite-dimensional methods 
over a compact base manifold ~,,r in the case of ~1~' we have the 
additional feature that the standard relativistic mathematics of Lorentz 
transformations and the 16-dimensional Dirac algebra of associated geomet- 
ric quantities appear uniquely and naturally as the means for defining and 
studying the real and complex differentiable structure over the manifold. On 
the basis of the principle of economy, we then associate the relativistic Dirac 
algebra over ~l~g with the physically known occurrences of such structure 
(otherwise, on our assumption that quantum theory is the most fundamental 
available theory, we would be compelled to look for a separate nonrelatiois- 
tic appearance of Lorentz invariance and the associated mathematical 
structure in the physical data relating to spin-I/2,  i.e., ~lcg, systems), and 
so we are led to try the hypothesis that our world of physical experience 
exhibits its relativistic character at a wide variety of scales, down to the 
nucleus and up to neutron stars, precisely because our experience at these 
different scales consists primarily of statistical observations on ~ c g  quan- 
tum systems. 

As currently understood in modem physical theory, the most general 
structure available for handling physically relevant differential geometry 
and symmetries is the mathematical language of vector bundles associated 
to a principal bundle over a manifold-- the theory of gauge fields in physics. 
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When we look for such structures over complex projective space, we find 
that the definition of ~,,W involves a natural or canonical principal bundle r 
with RZo ~''§ as bundle space and ~r as gauge group. Specifically, in the 
case of ~ g  the principal bundle structure is displayed by the mapping 

R'o =_ R"o/% 

where ~- is the bundle projection from the bundle space R 4 onto the base 
space ~lCg, and the complex group ~0 is the gauge group (invariance 
group) of the bundle, with elements x in a given orbit 2 of the group 
making up the fiber in R 4 over 2 as a base point of the bundle [see, for 
example, Bleecker (1981) for general mathematical treatment with physical 
applications]. 

Typical atlases of charts, defining the differentiable structure of R~ as 
bundle space of #, are constructed as follows: if X a = X:,, X 2 -~" X~,• are 
standard charts for :~tcg as specified earlier, with respective domains 
~ 1 = . ~ 1 ~ -  {P• }, ok' 2 = ~ z c ~ -  {P}, let x z and x 2 be local sections on 
these domains, i.e., for n = 1, 2, 

x . .  R, 4 = e - ' ( % )  

are suitably differentiable mappings into the usual differentiable structure 
on R 4 so that the real-valued mappings O,, and a .  on ~-l(qZ.), given by 

x = exp[ 0~(x)+ ia . (x )]  x . o  Or(x) 

are sufficiently differentiable. (We purposely leave the degree of differentia- 
bility required for physical theory unspecified, but of course, for concrete- 
ness, we could require C ~ if desired; to avoid technical complexities we 
prefer to follow the standard physical practice, and in what follows we 
simply assume that all structures have sufficient differentiability for the 
purposes at hand.) Then, on each of the two chart neighborhoods R 4 = 
#-x(q/,,), n =1,2,  coveting the bundle space R~, a choice of chart X. for 
the neighborhood ~ of the base space ~lcg and a choice of local section 
x,, defining standard logarithmic coordinates p., a . ,  for the fiber spaces 
( -  fro) over ~1~r specify completely a chart for the four-dimensional 
bundle space R~. In terms of such a pair (X.o  #, x,,o ~) over R, 4 c R~, 
natural coordinatizations for the four-dimensional manifold R 4, convenient 
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for different purposes, are given by 

x - - .  

x 

x ~ ( O , ( x ) , % ( x ) , e ~  i".(x') 

where, in all cases we have abbreviated On(x ) = On(Or(x)), % ( x ) =  %(~'(x)), 
for the standard lab polar angle coordinates of the spin vector a,~(x ) 
characterizing the ~1~ state 2 = Or(x), as defined earlier. 

Because of the Abelian nature of the gauge group go involved in the 
canonical principal bundle construction of ~1%', the distinction between the 
principal bundle and its simplest associated vector bundles is much less 
pronounced than would be the case for a non-Abelian gauge group, since 
there is no difference between fight and left actions in the Abelian case. 
Thus, the simplest type of vector bundle naturally associated with ~ c g  
(canonical line bundle) is only trivially different from the principal bundle 
itself, and is constructed by adding the zero point to each fiber 2, so that the 
fibers of the associated bundle 2 u {0} = {cg~ } are full real 2-planes in R 4 
or complex 1-spaces in ~g2 with 0 as a distinguished invariant point under 
the action of ~g0. The construction of more general vector bundles associ- 
ated to ~icg proceeds analogously, with complex Hilbert spaces oW of 
various dimensions chosen as fiber, and, of course, with the action of cg 0 on 
aut ~ defined by the complex structure of Jr'. 

Using the standard physical interpretation of cross sections of such 
associated vector bundles over ~ r  as "particle fields" describing particle- 
like quantum attributes associated with possible internal degrees of freedom 
of the basic physical states being modeled, we see that everything we have 
done earlier--including the scale-invariant W 1/2 construction of vector 
representatives for ~ c g  systems with many dimensions of internal complex- 
fly--can be expressed in the language of associated bundles o v e r  ~i~l~ as an 
"external coordinate space," i.e., base space, provided only that the funda- 
mental system states 2 can be regarded as confined to such a simple 
projective space. It should also be evident, once we note the fact that 
various representations of the gauge group cg 0 (including the adjoint 
representation, in this case the trivial representation C ---, I)  can be used to 
define the action on the associated fibers, that even our basic construction 
of Dirac algebra representations of states ~.~, ox., X,,(2), etc., can be fitted 
into the pattern of the associated bundle construction. 

In terms of the principal bundle construction of ~ ' ,  in fact, the 
standard projective representation of states J/.~ plays a mathematically 
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natural role, since it is equivalent to a choice of connection on the bundle 
space Rg. Each choice of ~,  is a projection onto the fiber ~ (vertical space 
of R 4) and so its complementary projection ~ - =  1 - ~ . ~  defines the 
corresponding horizontal subspace of R 4. Spreading such choices out along 
a fibre defines a splitting of the tangent space R 4 - R 4 at x ~ Rg into a 
vertical component Vxr (range of ~x) and a horizontal component/- /~ = V~" 
(range of J/.$ ) so that R 4 = R 4 = I /~OH~, and when such choices are made 
smoothly this is a standard construction of a connection. 

The choice of a connection now allows the definition of horizontal 
(covariant) and vertical derivatives: for any mapping f defined on R 4 and 
any tangent vector field y~ ~ TxR40 = R~, 

Dx~ ~f . Yx = D x f . +.{ yx =- D xn f . y~ 

DxC f " yx =-- D . j .  ~.~ yx = D ~ f  . y.~ 

To work with the corresponding Lie-algebra-valued one-form definition of 
connection, we simply make use of the natural action L x of bundle points 
x ~ Rg on the gauge group if0: 

C ~ LxC = Cx 

and its derivative: 

D~L: c~ ~ "fr(x)O (0} 

C -" D~L " C = Cx 

Noting that L x is invertible on the fiber #(x) ,  we have 

Y ---, [DxL  ] -1 "Y = C such that y = Cx 

Then ~0 x = [DxL] -1. ~ defines the vertical ~'-valued form on tangent vec- 
tors known as the one-form of  the connection, and dxo~. ff.~ = d.,."~0 defines 
the curvature of the connection. 

It should now be evident that choosing a connection is equivalent to 
specifying a metric gx( , ) on the tangent bundle of R~ (differentiably 
equivalent to the Euclidean metric and such that i = -  i+), since the 
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requirement 4,,~ = ~,.+ defines such a metric, and this in turn is equivalent to 
specifying a "timelike" vector field ~,0(x) in the Dirac algebra over R~ so 
that "Yo(X)d~,o(X) = d + defines g-adjointness on ~ relative to the Euclidean 
adjoint d. Application of the Q R  principle then requires invariance under 
all such metric (i.e., connection) choices, since they determine differentiably 
equivalent metrics on ~tW via charts (x, X) on R~ and horizontal lifts of 
tangent vectors at .~ on ~lcg to tangent vectors at x over R 4. As Bleecker 
(1981) shows in full generality, if standard Lagrangian variational methods 
are used over R~ to guarantee the required invariance (by incorporating the 
scalar curvature of the bundle metric connection into Lagrangians in the 
usual way), then both the Einstein field equations for g and the Yang-Mills 
equation for co hold over R 4, and geodesics x, in the four-dimensional 
bundle manifold project down to generally nongeodesic quantum state 
trajectories ~ t ( x , ) =  .~, in the base manifold ,~x~ with constant connection 
form values ~ox ..~ ~ = m + ie ~ r Thus we have a Kaluza-Klein-type quan- 
tum field theoretical model over a purely quantum theoretical base space 
~ ,  with the intriguing difference that no artificial fifth-dimension need be 
introduced since everything occurs naturally in the four-dimensional canoni- 
cal bundle structure over ~ ' ~ ,  and we have two gauge Lie algebra "charge" 
parameters to interpret, instead of the usual single imaginary component e 
of the standard Kaluza-Klein model. 

Since gauge quantum field theory supplies a well-established interpreta- 
tion for the q/(1)= {e i~ component of the gauge group ~0 acting on 
~ r  systems--Weyl's gauge theory of the electromagnetic potential for the 
spin-l /2 electronic structure of matter incorporated into the relativistic 
Dirac spinor representation of such structure--the Q R  principle of econ- 
omy requires us to use the same interpretation for field theory over ~'1~, 
with of course the result that the pure imaginary component of the connec- 
tion form co on geodesics of R 4 is to be interpreted as electric charge. Can a 
similar case be made for the interpretation of the real component of co as 
mass (the geodesically constant Lie algebra component of ~o,. corresponding 
to the noncompact e p~') part of the gauge group ~g0)? We believe the 
answer should be affirmative, given the already existing interpretation of 
spinorial quantities in both quantum theory and general relativity to repre- 
sent the electromagnetic interactions of spin-l/2 matter. The simplest way 
to incorporate this standard interpretation is to identify the natural charts 

constructed earlier for the bundle space R~ with the spinor representation 
(Penrose flagpole-flag picture) of pure frequency electromagnetic field 
emission and absorption as presented, for example, in Misner, Thorne, and 
Wheeler, Gravitation (1973), p. 1157ff., to describe laser ranging phenom- 
ena. In that picture, 0 and r represent, as before, standard lab polar angle 
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coordinates for the polarization vector associated with a ~ '  state (i.e., 
spin-l/2 structure), but interpreted in the canonical line bundle represent- 
ing the simplest vector fields associated with such structures (electromag- 
netic fields) as specifying the lightlike (i.e., r = t) direction of propagation 
of the fields between the system states ~ ~ ~ (represented by zero section 
of line bundle) and possible observer points x (represented by nonzero 
sections necessary in the construction of bundle charts). This natural 
identification then forces the interpretation of r ( x ) =  t (x )=  e pc~') as the 
positive radial separation of system and observer in the four-dimensional 
bundle manifold R 4, and gives of course the already noted identification of 
e i'~cx~ with the electromagnetic "flag on the flagpole" defined by (r, 0, q~), 
and we get as an additional bonus the fact that gauge changes in the 
positive operator eO~"~I ~ GL(2, r are associated in just the fight way with 
general relativistic metric variations over R 4 (and 9~L~g) that cannot be 
defined by the special relativistic transformations of SL(2, 5).  In this way, 
the geodesically constant vertical Lie algebra valued forms on the bundle 
space R~ define natural meanings for both mass and charge over 9~1r 

All these field theoretical arguments need to be spelled out in full detail 
in terms of general relativistic Lagrangians over R 4, of course, and we 
propose to present such a model in the near future, but for the present we 
can see that the "microcosmic" geometry of a simple 9~cg quantum system 
exhibits the full richness of general relativistic mathematical structure 
usually associated only with "macrocosmic" systems, and to the extent that 
we can understand our macroscopic thermodynamic worldview as built up 
from countless prismatic reflections of the fundamental 9~acg geometry we 
have a natural quantum origin for our general relativistic 4-space viewpoint 
--we live in general relativistic 4-space because they (fundamental observed 
systems) live in ~ ' ~ .  On the other hand we can also see how such a 
worldview must prove inadequate when we encounter quantum systems 
(whether neutron or neutron star) that essentially inhabit 9~2 W, with the 
corresponding symmetry group GL(3, cg). This group contains cg 0, SU(3), 
and SL(3, cK)-SU(3) uniquely and naturally, but any appearance of 
GL(2, g') = ~o • SL(2, cg) will be nonunique and arbitrary, and the attempt 
to represent the essentially six-dimensional geometry of 9~2cg systems in 
terms of the four-dimensional general relativistic geometry appropriate to 
y, cg will obviously result in mathematical singularities. 
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